Crypto Escrow User Manual

Version 1.0.0-SNAPSHOT

Frank Cornelis

Copyright © 2014 e-Contract.be BVBA
Published Dec 23, 2014

Abstract

This document is the user manual for the Crypto Escrow tool.

I 11 7 To 11 X 1o] o [PPSO 1
1.1, REQUITEMENTS ..ootiiiiiiti ettt ettt ettt e ettt e ettt e e ettt e e et st e e et ebb s e eeentnaeeeees 1
R 1= 111 o] = 1 (= o 2
2.1, Create @ KEYSIOIEcciitiieeiiti ettt et e e e 2
2.2. Encrypting and deCryPlingeveuiiiiieii e 2
2.3. Managing encryption identitieSoveiiiiiiiiiii e 2
3. SAfENEL ETOKEN .ottt e e ettt e e e et e e e et a e e e et e e eertn e aeen 3
3.1, ToKen INHAlIZAtIONoieeee e e 3
3.2. Self-signed CErtIfiCALEccvviiiiii e 3
3.3. Delete @ COrtifiCateuu i 5
4, Encryption ContaiNer FOIMALccuuiiiiiiiii e e e e e e e e e e e e e et e e e e eeanaeeaen 6
A. Crypto Escrow User Manual LICENSEccouuuiiiiiiiiiiiiii e 6
B. Crypto ESCrOW ProjecCt LICENSEciveniiiii it e e e e 6

1. Introduction

Software escrow can quickly become expensive when the software is released often. Registering
each release at a software escrow office can generate a nice invoice flow. Hence it is cheaper
to register once crypto keys at an escrow office and use the crypto keys to protect the software
source code. The Crypto Escrow tool aids in the setup of such mechanism. The Crypto Escrow tool
supports both software keys and hardware tokens. The usage of hardware tokens is especially
interesting as it allows you to physically split the token owner and the token PIN owner. From a
security policy point of view this four eyes principle might be mandatory.

The Crypto Escrow tool allows for encryption of multiple files, targeting multiple recipient
certificates. The Crypto Escrow tool uses a hybrid crypto system. The files are encrypted using a
symmetric crypto system. The symmetric encryption key is encrypted towards each recipient using
an asymmetric crypto system. This scheme is very flexible and allows for redundancy towards
recipient (hardware token) certificates.

1.1. Requirements

The Crypto Escrow tool requires Java version 1.8.0_25 as it is using JavaFX for its user interface.

Crypto Escrow User Manual

Because the Crypto Escrow tool uses AES 256 keys it requires the Unlimited Strength Jurisdiction
Policy Files to be installed within the Java 8 runtime.

If you want to use hardware tokens, you need the appropriate PKCS#11 libraries.

2. Getting Started

Start the application under Windows by simply double clicking crypt o- escr ow ui - 1. 0. 0-
SNAPSHOT. j ar . If you receive a "Java Exception has occurred” from the "Java Virtual Machine
Launcher" this is probably due to the fact that you're not running Java 8. In this case, first install
Java 8. If you receive an error message about the "Unlimited Strength Jurisdiction Policy", you
need to install these first.

2.1. Create a keystore

First of all we need to create a PKCS#12 keystore file. This keystore file will contain our private
encryption key and the corresponding self-signed certificate. Create this keystore via "Keystore"
and "New PKCS#12 keystore". Take as "Distinguished name" for example "CN=Test". Keystore
files normally use ".p12" or ".pfx" as file extension.

Next we will inspect the PKCS#12 keystore and extract the certificate out of it. You need this
certificate later on as encryption recipient (to yourself for testing purposes). Do this via "Keystore"
and "Inspect PKCS#12 keystore". Click on "Export" to export your self-signed encryption
certificate. Certificate files often use the ".cer" file extension.

2.2. Encrypting and decrypting

Now that we have a PKCS#12 keystore containing our private key, and the certificate stored in a
separate file, we can encrypt some files to ourself.

Start via "File" and "Encrypt". Select some files. Next add your own self-signed encryption
certificate as recipient certificate. The target container is actually a ZIP file. Thus you can use the
".zip" file extension for this.

Decrypting the ZIP container can be done via "File" and "Decrypt". This time you need to use your
PKCS#12 keystore that contains the private encryption key.

2.3. Managing encryption identities

Encrypting and decrypting files to yourself is nice. But most of the time you will want to encrypt files
towards somebody else. This requires access to the encryption certificate of the other party. To
make this possible the other party needs a secure way to communicate its encryption certificate
to you. This is where the concept of encryption identities come into play.

If you send your encryption certificate to somebody, the receiving party needs a way to be able
to trust that encryption certificate as coming from you. An encryption identity provides this trust
mechanism.

SafeNet eToken

An encryption identity is a proxy certificate based on your encryption certificate and created using
your elD authentication certificate. Thus you will create a new encryption certificate that has been
issued using your elD authentication certificate.

Create an encryption identity via "Identity" and "Create Identity". This operation requires your elD
card to issue the proxy certificate.

If you receive an encryption identity you can import its encryption certificate via "ldentity" and
"Import Identity Certificate". The proxy certificate issuer will be checked using a PKI validation.
This ensures that you will only import encryption certificates from trusted entities.

3. SafeNet eToken

Encryption keys should be kept on hardware tokens. In this manual we demonstrate the usage of
SafeNet eToken for management of the encryption keys.

3.1. Token Initialization

Start the SafeNet Authentication Client. Click "Advanced View". Click on the token. Click on
"Initialize Token". Set a "Token Name". Set a token password. Uncheck "Token Password must
be changed on first logon". Click "Advanced". Ensure "2048-bit RSA key support" is checked.
Click "Start". The token now has been initialised.

Check the availability of the token via:

pkcsll-tool --nodule /usr/lib64/1ibeTPkcsll.so --list-slots --showinfo

Next we generate an RSA 2048 hit key pair on the eToken itself.

pkcsl1ll-tool --nodule /usr/lib64/1ibeTPkcsll. so --keypairgen --key-type rsa: 2048
--login --id 45 --1abel ESCROW

This operation can take a while. Check the available objects on the token via:

pkcsll-tool --nodule /usr/lib64/1ibeTPkcsll.so --login --list-objects

3.2. Self-signed certificate

Generate a self-signed certificate via:

openssl req -config openssl-etoken.conf -engine pkcsll -new -x509 -days 365 -
key 45 -keyform engine -out cert.der -outform DER -sha256

Crypto Escrow User Manual

With the OpenSSL configuration file openssl - et oken. conf containing the following:

openssl _conf =openssl| _def

[openssl _def]
engi nes=engi ne_section

[engi ne_secti on]
pkcsll=pkcsl1ll_secti on

[pkcs1l_secti on]

engi ne_i d=pkcs11l

dynamni c_pat h=/usr/|i b64/ openssl / engi nes/ engi ne_pkcs1l. so
MODULE_PATH=/ usr/1i b64/1i beTPkcs1l. so

init=0

[req]

di sti ngui shed_nane=r eq_di sti ngui shed_nane
pr onpt =no

x509_ext ensi ons=r eq_x509_ext ensi ons

[reqg_di stingui shed_nane]
commonNane=Crypt o Escrow
Ol ntel |l ectual Property
O=e- Contr act . be

C=BE

[reg_x509_ext ensi ons]

basi cConst r ai nt s=CA: FALSE
keyUsage=keyEnci pher ment
subj ect Keyl denti fi er=hash

Check the resulting self-signed certificate via:

openssl x509 -noout -text -in cert.der -inform DER

Write the certificate to the token via:

pkcsll-tool --module /usr/lib64/1ibeTPkcsll.so --wite-object cert.der --type
cert --login --label ESCRON--id 45 --slot O

Make sure that the label and the identifier corresponds with the one of the private key. Check the
available objects on the token via:

Delete a certificate

pkcsl1ll-tool --nodule /usr/lib64/1ibeTPkcsll.so --login --1ist-objects

Check whether the Java runtime can load the certificate via:

keyt ool - keystore NONE -storetype PKCS11 - provi der d ass
sun. security. pkcsll. SunPKCS11 -provi derArg etoken.config -list -v

With the et oken. confi g file containing:

nanme=eToken
l'ibrary=/usr/lib64/1ibeTPkcsll. so
sl ot Li st I ndex=0

3.3. Delete a certificate

It can happen that you wrote the wrong certificate to the token. In this case, you can delete the
certificate from the token via:

pkcsll-tool --nodule /usr/lib64/1ibeTPkcsll.so --del ete-object --type cert --
login --1abel ESCROW--id 45 --slot O

Check the available objects on the token via:

pkcsll-tool --nodule /usr/lib64/1ibeTPkcsll.so --login --1ist-objects

To delete the private key from the token, run:

pkcsll-tool --nodule /usr/lib64/1ibeTPkcsll. so --del ete-object --type privkey --
login --1abel ESCROW--id 45 --slot O

The corresponding public key can be removed from the token via:

pkcsll-tool --nodule /usr/lib64/1ibeTPkcsll. so --del ete-object --type pubkey --
login --1abel ESCROW--id 45 --slot O

Crypto Escrow User Manual

4. Encryption Container Format

The encryption container format is based on the EPUB Open Container Format (OCF) 3.0
specification. The files are encrypted using an AES 256 bit symmetric key. The encryption
algorithm is AES-GCM. The AES key is encrypted towards each recipient certificate using SHA
512 RSA-OAEP. This minimum RSA key size is 2048 bit.

A. Crypto Escrow User Manual License

@recel

This document has been released under the Creative Commons 3.0 [http://creativecommons.org/
licenses/by-nc-nd/3.0/] license.

B. Crypto Escrow Project License

The Crypto Escrow Project source code has been released under the GNU LGPL version 3.0.

This is free software; you can redistribute it and/or nodify it under the terns
of the GNU Lesser GCeneral Public License version 3.0 as published by the Free
Sof t war e Foundati on.

This software is distributed in the hope that it will be useful, but WTHOUT ANY
WARRANTY; without even the inplied warranty of MERCHANTABI LI TY or FlI TNESS FOR A
PARTI CULAR PURPCSE. See the GNU Lesser CGeneral Public License for nore details.

You shoul d have received a copy of the GNU Lesser General Public License along
with this software; if not, see http://ww.gnu.org/licenses/.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

	Crypto Escrow User Manual
	Table of Contents
	1. Introduction
	1.1. Requirements

	2. Getting Started
	2.1. Create a keystore
	2.2. Encrypting and decrypting
	2.3. Managing encryption identities

	3. SafeNet eToken
	3.1. Token Initialization
	3.2. Self-signed certificate
	3.3. Delete a certificate

	4. Encryption Container Format
	A. Crypto Escrow User Manual License
	B. Crypto Escrow Project License

